Summertime Near‐Surface Temperature Biases Over the Central United States in Convection‐Permitting Simulations

Author:

Qin Hongchen1ORCID,Klein Stephen A.1ORCID,Ma Hsi‐Yen1ORCID,Van Weverberg Kwinten234ORCID,Feng Zhe5ORCID,Chen Xiaodong5ORCID,Best Martin2ORCID,Hu Huancui5ORCID,Leung L. Ruby5ORCID,Morcrette Cyril J.26ORCID,Rumbold Heather2,Webster Stuart2

Affiliation:

1. Lawrence Livermore National Laboratory Livermore CA USA

2. Met Office Exeter UK

3. Now at Department of Geography Ghent University Ghent Belgium

4. Now at Royal Meteorological Institute Brussels Belgium

5. Pacific Northwest National Laboratory Richland WA USA

6. Department of Mathematics and Global Systems Institute University of Exeter Exeter UK

Abstract

AbstractConvection‐Permitting Model (CPM) simulations of the Central United States climate for the summer of 2011 are studied to understand the causes of warm biases in 2‐m air temperature (T2m) and related underestimates of precipitation including that from mesoscale convective systems (MCSs). Based on 10 CPM simulations and 9 coarser‐resolution model simulations, we quantify contributions from evaporative fraction (EF) and radiation to the T2m bias with both types of models overestimating T2m largely because they underestimate EF. The performance of CPMs in capturing MCS characteristics (frequency, rainfall, propagation) varies. The pre‐summer precipitation bias has large correlation with mean summertime T2m bias but the relationship between summertime MCS mean rainfall bias and T2m bias is non‐monotonic. Analysis of lifting condensation level deficit and convective available potential energy suggests that models with T2m warm biases and low EF have too dry and stable boundary layers, inhibiting the formation of clouds, precipitation and MCSs. Among the CPMs with differing model formulations (e.g., transpiration, infiltration, cloud macrophysics and microphysics), evidence suggests that altering the land‐surface model is more effective than altering the atmospheric model in reducing T2m biases. These results demonstrate that land‐atmosphere interactions play a very important role in determining the summertime climate of the Central United States.

Funder

U.S. Department of Energy

Met Office

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3