Affiliation:
1. Pacific Northwest National Laboratory, Richland, Washington
Abstract
Abstract
This study utilizes six commonly used reanalysis products, including the NCEP–Department of Energy Reanalysis 2 (NCEP2), NCEP Climate Forecast System Reanalysis (CFSR), ECMWF interim reanalysis (ERA-Interim), Japanese 25-year Reanalysis Project (JRA-25), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and North American Regional Reanalysis (NARR), to evaluate features of the southern Great Plains low-level jet (LLJ) above the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) Southern Great Plains site. Two sets of radiosonde data are utilized: the six-week Midlatitude Continental Convective Clouds Experiment (MC3E) and a 10-yr period spanning 2001 through 2010. All six reanalyses are compared to MC3E data, while only the NARR, MERRA, and CFSR are compared to the 10-yr data. The reanalyses are able to represent most aspects of the composite LLJ profile, although there is a tendency for each reanalysis to overestimate the wind speed between the nose of the LLJ (at approximately 900 mb) and a pressure level of 700 mb. There are large discrepancies in the number of LLJs observed and derived from the reanalysis, particularly for strong LLJs, leading to an underestimate of the moisture transport associated with LLJs. When the 10-yr period is considered, the NARR and CFSR overestimate and MERRA underestimates the total moisture transport, but all three underestimate the transport associated with strong LLJs by factors of 1.4, 2.0, and 2.7 for CFSR, NARR, and MERRA, respectively. During MC3E there were differences in the patterns of moisture convergence and divergence, but the patterns are more consistent during the 10-yr period.
Publisher
American Meteorological Society
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献