Improving Rain/No-Rain Detection Skill by Merging Precipitation Estimates from Different Sources
Author:
Affiliation:
1. Hydrology and Remote Sensing Laboratory, USDA, Beltsville, Maryland
2. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
Abstract
Funder
National Aeronautics and Space Administration
Publisher
American Meteorological Society
Subject
Atmospheric Science
Link
http://journals.ametsoc.org/jhm/article-pdf/21/10/2419/5007322/jhmd200097.pdf
Reference80 articles.
1. Assessing objective techniques for gauge-based analyses of global daily precipitation;Chen;J. Geophys. Res.,2008
2. A hybrid Bayesian-SVD based method to detect false alarms in PERSIANN precipitation estimation product using related physical parameters;Ghajarnia;J. Hydrol.,2016
3. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales;Huffman;J. Hydrometeor.,2007
4. Ranking and combining multiple predictors without labeled data;Parisi;Proc. Natl. Acad. Sci. USA,2014
5. Machine learning–based blending of satellite and reanalysis precipitation datasets: A multiregional tropical complex terrain evaluation;Bhuiyan;J. Hydrometeor.,2019
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparing quantile regression forest and mixture density long short-term memory models for probabilistic post-processing of satellite precipitation-driven streamflow simulations;Hydrology and Earth System Sciences;2023-12-20
2. Generation of High-Resolution Gridded Runoff Product for the Republic of Korea Sub-Basins from Seasonal Merging of Global Reanalysis Datasets;Water;2023-10-26
3. Statistical uncertainty analysis-based precipitation merging (SUPER): A new framework for improved global precipitation estimation;Remote Sensing of Environment;2022-12
4. The reliability of categorical triple collocation for evaluating soil freeze/thaw datasets;Remote Sensing of Environment;2022-11
5. QRF4P‐NRT: Probabilistic Post‐Processing of Near‐Real‐Time Satellite Precipitation Estimates Using Quantile Regression Forests;Water Resources Research;2022-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3