Generation of High-Resolution Gridded Runoff Product for the Republic of Korea Sub-Basins from Seasonal Merging of Global Reanalysis Datasets

Author:

Sunwoo Woo-Yeon1ORCID,Nguyen Hoang Hai2ORCID,Jun Kyung-Soo1ORCID

Affiliation:

1. Water Resources Engineering Lab, Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University, Suwon 440-746, Republic of Korea

2. Sejong Rain Co., Ltd., In-House Venture of K-Water, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

Abstract

Gridded runoff product at the sub-basin level is pivotal for effective hydrologic modeling and applications. Although reanalyses can overcome the lack of traditional stream gauge networks to provide reliable geospatial runoff data, the inherent uncertainties associated with single products are still a problem. This study aims to improve the single products’ limitations over the heterogeneous Republic of Korea region by merging three common global reanalysis datasets to generate a high-quality and long-term gridded runoff product at a high resolution. The merging method relies on triple collocation (TC) analysis, which requires no reference runoff dataset, with a modification that was applied separately to wet and dry seasons (seasonal merging). A comparison between the merged runoff and its parent products at 0.10° grid, on a daily basis, and using the entire 10-year period (2011–2020) against an independent ground-based sub-basin runoff product generally indicated a superior performance of the merged product even at the national scale of Republic of Korea. Moreover, a slight improvement obtained with the seasonal merging compared to the traditional all-time merging highlighted the potential of this modification to address several drawbacks in the TC assumption, especially the non-stationary runoff pattern caused by seasonal rainfall effects in the Republic of Korea. Despite the need for further improvement such as bias correction, the results of this study encourage making a reliable benchmark runoff product at a regional scale, which is beneficial for flood/drought monitoring and artificial intelligence-based hydrologic model training.

Funder

Korea government

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3