Investigating Relationships between Runoff–Erosion Processes and Land Use and Land Cover Using Remote Sensing Multiple Gridded Datasets

Author:

Fonseca Cláudia Adriana Bueno da,Al-Ansari NadhirORCID,Silva Richarde Marques daORCID,Santos Celso Augusto GuimarãesORCID,Zerouali BilelORCID,Oliveira Daniel Bezerra de,Elbeltagi AhmedORCID

Abstract

Climate variability, land use and land cover changes (LULCC) have a considerable impact on runoff–erosion processes. This study analyzed the relationships between climate variability and spatiotemporal LULCC on runoff–erosion processes in different scenarios of land use and land cover (LULC) for the Almas River basin, located in the Cerrado biome in Brazil. Landsat images from 1991, 2006, and 2017 were used to analyze changes and the LULC scenarios. Two simulations based on the Soil and Water Assessment Tool (SWAT) were compared: (1) default application using the standard model database (SWATd), and (2) application using remote sensing multiple gridded datasets (albedo and leaf area index) downloaded using the Google Earth Engine (SWATrs). In addition, the SWAT model was applied to analyze the impacts of streamflow and erosion in two hypothetical scenarios of LULC. The first scenario was the optimistic scenario (OS), which represents the sustainable use and preservation of natural vegetation, emphasizing the recovery of permanent preservation areas close to watercourses, hilltops, and mountains, based on the Brazilian forest code. The second scenario was the pessimistic scenario (PS), which presents increased deforestation and expansion of farming activities. The results of the LULC changes show that between 1991 and 2017, the area occupied by agriculture and livestock increased by 75.38%. These results confirmed an increase in the sugarcane plantation and the number of cattle in the basin. The SWAT results showed that the difference between the simulated streamflow for the PS was 26.42%, compared with the OS. The sediment yield average estimation in the PS was 0.035 ton/ha/year, whereas in the OS, it was 0.025 ton/ha/year (i.e., a decrease of 21.88%). The results demonstrated that the basin has a greater predisposition for increased streamflow and sediment yield due to the LULC changes. In addition, measures to contain the increase in agriculture should be analyzed by regional managers to reduce soil erosion in this biome.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3