Flood and drought hydrologic monitoring: the role of model parameter uncertainty

Author:

Chaney N. W.,Herman J. D.,Reed P. M.,Wood E. F.ORCID

Abstract

Abstract. Land surface modeling, in conjunction with numerical weather forecasting and satellite remote sensing, is playing an increasing role in global monitoring and prediction of extreme hydrologic events (i.e., floods and droughts). However, uncertainties in the meteorological forcings, model structure, and parameter identifiability limit the reliability of model predictions. This study focuses on the latter by assessing two potential weaknesses that emerge due to limitations in our global runoff observations: (1) the limits of identifying model parameters at coarser timescales than those at which the extreme events occur, and (2) the negative impacts of not properly accounting for model parameter equifinality in the predictions of extreme events. To address these challenges, petascale parallel computing is used to perform the first global-scale, 10 000 member ensemble-based evaluation of plausible model parameters using the VIC (Variable Infiltration Capacity) land surface model, aiming to characterize the impact of parameter identifiability on the uncertainty in flood and drought predictions. Additionally, VIC's global-scale parametric sensitivities are assessed at the annual, monthly, and daily timescales to determine whether coarse-timescale observations can properly constrain extreme events. Global and climate type results indicate that parameter uncertainty remains an important concern for predicting extreme events even after applying monthly and annual constraints to the ensemble, suggesting a need for improved prior distributions of the model parameters as well as improved observations. This study contributes a comprehensive evaluation of land surface modeling for global flood and drought monitoring and suggests paths forward to overcome the challenges posed by parameter uncertainty.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3