Machine Learning–Based Blending of Satellite and Reanalysis Precipitation Datasets: A Multiregional Tropical Complex Terrain Evaluation

Author:

Ehsan Bhuiyan Md. Abul1,Nikolopoulos Efthymios I.1,Anagnostou Emmanouil N.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut

Abstract

Abstract This study evaluates a machine learning–based precipitation ensemble technique (MLPET) over three mountainous tropical regions. The technique, based on quantile regression forests, integrates global satellite precipitation datasets from CMORPH, PERSIANN, GSMaP (V6), and 3B42 (V7) and an atmospheric reanalysis precipitation product (EI_GPCC) with daily soil moisture, specific humidity, and terrain elevation datasets. The complex terrain study areas include the Peruvian and Colombian Andes in South America and the Blue Nile in East Africa. Evaluation is performed at a daily time scale and 0.25° spatial resolution based on 13 years (2000–12) of reference rainfall data derived from dense in situ rain gauge networks. The technique is evaluated using K-fold, separately in each region, and leave-one-region-out validation experiments. Comparison of MLPET with the individual satellite and reanalysis precipitation datasets used for the blending and the recent Multi-Source Weighted-Ensemble Precipitation (MSWEP) global precipitation product exhibited improved systematic and random error statistics for all regions. In addition, it is shown that observations are encapsulated well within the ensemble envelope generated by the blending technique.

Funder

Eversource

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference75 articles.

1. Improved long-term mean annual rainfall fields for Colombia;Álvarez-Villa;Int. J. Climatol.,2011

2. Altitudinal precipitation gradients in the tropics from Tropical Rainfall Measuring Mission (TRMM) precipitation radar;Anders;J. Hydrometeor.,2015

3. ERA-Interim/Land: A global land surface reanalysis data set;Balsamo;Hydrol. Earth Syst. Sci.,2015

4. Global-scale regionalization of hydrologic model parameters;Beck;Water Resour. Res.,2016

5. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling;Beck;Hydrol. Earth Syst. Sci.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3