A Comparison of Statistical Dynamical and Ensemble Prediction Methods during Blocking

Author:

O’Kane Terence J.1,Frederiksen Jorgen S.1

Affiliation:

1. CSIRO Marine and Atmospheric Research, Aspendale, Australia

Abstract

Abstract In this paper error growth is examined using a family of inhomogeneous statistical closure models based on the quasi-diagonal direct interaction approximation (QDIA), and the results are compared with those based on ensembles of direct numerical simulations using bred perturbations. The closure model herein includes contributions from non-Gaussian terms, is realizable, and conserves kinetic energy and enstrophy. Further, unlike previous approximations, such as those based on cumulant-discard (CD) and quasi-normal (QN) hypotheses (Epstein and Fleming), the QDIA closure is stable for long integration times and is valid for both strongly non-Gaussian and strongly inhomogeneous flows. The performance of a number of variants of the closure model, incorporating different approximations to the higher-order cumulants, is examined. The roles of non-Gaussian initial perturbations and small-scale noise in determining error growth are examined. The importance of the cumulative contribution of non-Gaussian terms to the evolved error tendency is demonstrated, as well as the role of the off-diagonal covariances in the growth of errors. Cumulative and instantaneous errors are quantified using kinetic energy spectra and a small-scale palinstrophy production measure, respectively. As a severe test of the methodology herein, synoptic situations during a rapid regime transition associated with the formation of a block over the Gulf of Alaska are considered. In general, the full QDIA closure results compare well with the statistics of direct numerical simulations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3