Systematic calculation of finite-time mixed singular vectors and characterization of error growth for persistent coherent atmospheric disturbances over Eurasia

Author:

Quinn Courtney1ORCID,O’Kane Terence J.1ORCID,Harries Dylan1ORCID

Affiliation:

1. CSIRO Oceans and Atmosphere, Hobart, TAS 7000, Australia

Abstract

Singular vectors (SVs) have long been employed in the initialization of ensemble numerical weather prediction (NWP) in order to capture the structural organization and growth rates of those perturbations or “errors” associated with initial condition errors and instability processes of the large scale flow. Due to their (super) exponential growth rates and spatial scales, initial SVs are typically combined empirically with evolved SVs in order to generate forecast perturbations whose structures and growth rates are tuned for specified lead-times. Here, we present a systematic approach to generating finite time or “mixed” SVs (MSVs) based on a method for the calculation of covariant Lyapunov vectors and appropriate choices of the matrix cocycle. We first derive a data-driven reduced-order model to characterize persistent geopotential height anomalies over Europe and Western Asia (Eurasia) over the period 1979–present from the National Centers for Environmental Prediction v1 reanalysis. We then characterize and compare the MSVs and SVs of each persistent state over Eurasia for particular lead-times from a day to over a week. Finally, we compare the spatiotemporal properties of SVs and MSVs in an examination of the dynamics of the 2010 Russian heatwave. We show that MSVs provide a systematic approach to generate initial forecast perturbations projected onto relevant expanding directions in phase space for typical NWP forecast lead-times.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3