Hidden Error Variance Theory. Part I: Exposition and Analytic Model

Author:

Bishop Craig H.1,Satterfield Elizabeth A.2

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. National Research Council, Monterey, California

Abstract

Abstract A conundrum of predictability research is that while the prediction of flow-dependent error distributions is one of its main foci, chaos fundamentally hides flow-dependent forecast error distributions from empirical observation. Empirical estimation of such error distributions requires a large sample of error realizations given the same flow-dependent conditions. However, chaotic elements of the flow and the observing network make it impossible to collect a large enough conditioned error sample to empirically define such distributions and their variance. Such conditional variances are “hidden.” Here, an exposition of the problem is developed from an ensemble Kalman filter data assimilation system applied to a 10-variable nonlinear chaotic model and 25 000 replicate models. The 25 000 replicates reveal the error variances that would otherwise be hidden. It is found that the inverse-gamma distribution accurately approximates the posterior distribution of conditional error variances given an imperfect ensemble variance and provides a reasonable approximation to the prior climatological distribution of conditional error variances. A new analytical model shows how the properties of a likelihood distribution of ensemble variances given a true conditional error variance determine the posterior distribution of error variances given an ensemble variance. The analytically generated distributions are shown to satisfactorily fit empirically determined distributions. The theoretical analysis yields a rigorous interpretation and justification of hybrid error variance models that linearly combine static and flow-dependent estimates of forecast error variance; in doing so, it also helps justify and inform hybrid error covariance models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3