Hybrid Ensemble–Variational Filter: A Spatially and Temporally Varying Adaptive Algorithm to Estimate Relative Weighting

Author:

El Gharamti Mohamad1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

Abstract

AbstractModel errors and sampling errors produce inaccurate sample covariances that limit the performance of ensemble Kalman filters. Linearly hybridizing the flow-dependent ensemble-based covariance with a time-invariant background covariance matrix gives a better estimate of the true error covariance. Previous studies have shown this, both in theory and in practice. How to choose the weight for each covariance remains an open question especially in the presence of model biases. This study assumes the weighting coefficient to be a random variable and then introduces a Bayesian scheme to estimate it using the available data. The scheme takes into account the discrepancy between the ensemble mean and the observations, the ensemble variance, the static background variance, and the uncertainties in the observations. The proposed algorithm is first derived for a spatially constant weight and then this assumption is relaxed by estimating a unique scalar weight for each state variable. Using twin experiments with the 40-variable Lorenz 96 system, it is shown that the proposed scheme is able to produce quality forecasts even in the presence of severe sampling errors. The adaptive algorithm allows the hybrid filter to switch between an EnKF and a simple EnOI depending on the statistics of the ensemble. In the presence of model errors, the adaptive scheme demonstrates additional improvements compared with standard enhancements alone, such as inflation and localization. Finally, the potential of the spatially varying variant to accommodate challenging sparse observation networks is demonstrated. The computational efficiency and storage of the proposed scheme, which remain an obstacle, are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3