Net Precipitation of Antarctica: Thermodynamical and Dynamical Parts of the Climate Change Signal

Author:

Grieger Jens1,Leckebusch Gregor C.2,Ulbrich Uwe1

Affiliation:

1. Institute of Meteorology, Freie Universität Berlin, Berlin, Germany

2. School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Abstract

Abstract This paper investigates climate change signals of Southern Hemisphere (SH) moisture flux simulated by three members of one CMIP3 coupled atmosphere–ocean general circulation model (AOGCM) and a multimodel ensemble of CMIP5 simulations. Generally, flux changes are dominated by increased atmospheric moisture due to temperature increase in the future climate projections. An approach is presented to distinguish between thermodynamical and dynamical influences on moisture flux. Furthermore, a physical interpretation of the transport changes due to dynamics is investigated by decomposing atmospheric waves into different length scales and temporal variations. Signals of moisture flux are compared with fluctuations of geopotential height fields as well as climate signals of extratropical cyclones. Moisture flux variability in the synoptic length scale with temporal variations shorter than 8 days can be assigned to the SH storm track. Climate change signals of these atmospheric waves show a distinctive poleward shift. This can be attributed to the climate change signal of extratropical cyclones. Furthermore, the climate change signal of atmospheric waves can be better understood if strong cyclones that intensify especially on the Eastern Hemisphere are taken into account. Antarctic net precipitation is calculated by means of the vertically integrated moisture flux. Future projections show increasing signals of net precipitation, whereas the dynamical part of net precipitation decreases. This can be understood by means of the low-variability component of synoptic-scale waves, which show a decreasing signal, especially off the coast of West Antarctica. This is shown to be due to changing variability of the Amundsen–Bellingshausen Seas low.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3