Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature?
-
Published:2023-07-03
Issue:7
Volume:17
Page:2563-2583
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Nicola LenaORCID, Notz DirkORCID, Winkelmann RicardaORCID
Abstract
Abstract. With progressing global warming, snowfall in Antarctica is expected to increase, which could counteract or even temporarily overcompensate increased ice-sheet mass losses caused by increased ice discharge and melting. For sea-level projections it is therefore vital to understand the processes determining snowfall changes in Antarctica. Here we revisit the relationship between Antarctic temperature changes and precipitation changes, identifying and explaining regional differences and deviations from the theoretical approach based on the Clausius–Clapeyron relationship. Analysing the latest estimates from global (CMIP6, Coupled Model Intercomparison Project Phase 6) and regional (RACMO2.3) model projections, we find an average increase of 5.5 % in annual precipitation over Antarctica per degree of warming, with a minimum sensitivity of 2 % K−1 near Siple Coast and a maximum sensitivity of > 10 % K−1 at the East Antarctic plateau region. This large range can be explained by the prevailing climatic conditions, with local temperatures determining the Clausius–Clapeyron sensitivity that is counteracted in some regions by the prevalence of the coastal wind regime. We compare different approaches of deriving the sensitivity factor, which in some cases can lead to sensitivity changes of up to 7 percentage points for the same model.
Importantly, local sensitivity factors are found to be strongly dependent on the warming level, suggesting that some ice-sheet models which base their precipitation estimates on parameterisations derived from these sensitivity factors might overestimate warming-induced snowfall changes, particularly in high-emission scenarios. This would have consequences for Antarctic sea-level projections for this century and beyond.
Funder
Horizon 2020 Deutsche Forschungsgemeinschaft Bundesministerium für Bildung, Wissenschaft und Forschung
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference79 articles.
1. Agosta, C., Favier, V., Krinner, G., Gallée, H., Fettweis, X., and Genthon,
C.: High-resolution modelling of the Antarctic surface mass balance,
application for the twentieth, twenty first and twenty second centuries,
Clim. Dynam., 41, 3247–3260, https://doi.org/10.1007/s00382-013-1903-9, 2013. a, b 2. Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020. a 3. Bengtsson, L., Hodges, K. I., Koumoutsaris, S., Zahn, M., and Keenlyside, N.:
The changing atmospheric water cycle in polar regions in a warmer climate,
Tellus A, 63, 907–920,
https://doi.org/10.1111/j.1600-0870.2011.00534.x, 2011. a 4. Bracegirdle, T. J., Connolley, W. M., and Turner, J.: Antarctic climate change
over the twenty first century, J. Geophys. Res.-Atmos.,
113, D03103, https://doi.org/10.1029/2007JD008933, 2008. a, b, c 5. Bracegirdle, T. J., Krinner, G., Tonelli, M., Haumann, F. A., Naughten, K. A., Rackow, T., Roach, L. A., and Wainer, I.: Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6, Atmos. Sci. Lett., 21, e984, https://doi.org/10.1002/asl.984, 2020.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|