First results of the polar regional climate model RACMO2.4
-
Published:2024-09-09
Issue:9
Volume:18
Page:4065-4088
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
van Dalum Christiaan T.ORCID, van de Berg Willem JanORCID, Gadde Srinidhi N.ORCID, van Tiggelen MauriceORCID, van der Drift Tijmen, van Meijgaard ErikORCID, van Ulft Lambertus H.ORCID, van den Broeke Michiel R.ORCID
Abstract
Abstract. The next version of the polar Regional Atmospheric Climate Model (referred to as RACMO2.4p1) is presented in this study. The principal update includes embedding of the package of physical parameterizations of the Integrated Forecast System (IFS) cycle 47r1. This constitutes changes in the precipitation, convection, turbulence, aerosol and surface schemes and includes a new cloud scheme with more prognostic variables and a dedicated lake model. Furthermore, the standalone IFS radiation physics module ecRad is incorporated into RACMO, and a multilayer snow module for non-glaciated regions is introduced. Other updates involve the introduction of a fractional land–ice mask, new and updated climatological data sets (such as aerosol concentrations and leaf area index), and the revision of several parameterizations specific to glaciated regions. As a proof of concept, we show first results for Greenland, Antarctica and a region encompassing the Arctic. By comparing the results with observations and the output from the previous model version (RACMO2.3p3), we show that the model performs well regarding the surface mass balance, surface energy balance, temperature, wind speed, cloud content and snow depth. The advection of snow hydrometeors strongly impacts the ice sheet's local surface mass balance, particularly in high-accumulation regions such as southeast Greenland and the Antarctic Peninsula. We critically assess the model output and identify some processes that would benefit from further model development.
Publisher
Copernicus GmbH
Reference94 articles.
1. Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020. a 2. Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model: procedures, data sources and analysis, NOAA technical memorandum NESDIS NGDC, 24, https://repository.library.noaa.gov/view/noaa/1163 (last access: 5 September 2024), 2009. a 3. Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., and Fettweis, X.: Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica, Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, 2021. a 4. Andreas, E. L.: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, https://doi.org/10.1007/BF00121562, 1987. a 5. Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C. W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone, Q. J. Roy. Meteor. Soc., 136, 927–943, https://doi.org/10.1002/qj.618, 2010. a
|
|