Future projections of temperature and precipitation for Antarctica

Author:

Tewari Kamal,Mishra Saroj K,Salunke Popat,Dewan AnupamORCID

Abstract

Abstract Antarctica directly impacts the lives of more than half of the world’s population living in the coastal regions. Therefore it is highly desirable to project its climate for the future. But it is a region where the climate models have large inter-modal variability and hence it raises questions about the robustness of the projections available. Therefore, we have examined 87 global models from three modelling consortia (Coupled Model Intercomparison Project Phase 5 (CMIP5), Coupled Model Intercomparison Project Phase 6 (CMIP6), and NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)), characterized their fidelity, selected a set of ten models (MM10) performing satisfactorily, and used them to make the future projection of precipitation and temperature, and assessed the contribution of precipitation towards sea-levels. For the historical period, the multi-model mean (MMM) of CMIP5 performed slightly better than CMIP6 and was worse for NEX-GDDP, with negligible surface temperature bias of approximately 0.5 °C and a 17.5% and 19% biases in the mean precipitation noted in both CMIP consortia. These biases considerably reduced in MM10, with 21st century projections showing surface warming of approximately 5.1 °C–5.3 °C and precipitation increase approximately 44%–50% against ERA-5 under high-emission scenarios in both CMIP consortia. This projected precipitation increase is much less than that projected using MMM in previous studies with almost the same level of warming, implying approximately 40.0 mm yr−1 contribution of precipitation towards sea-level mitigation against approximately 65.0 mm yr−1.

Funder

DST Centre of Excellence in Climate Modelling, IIT Delhi

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3