Affiliation:
1. Institute of Industrial Science The University of Tokyo Kashiwa Japan
2. Department of Global Environment and Disaster Prevention Sciences Hirosaki University Hirosaki Japan
3. Department of Atmospheric Science Kongju National University Kongju South Korea
4. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Sciences Bremerhaven Germany
5. School of Atmospheric Sciences Sun Yat‐sen University Guangzhou China
6. Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan
Abstract
AbstractThe products from the Stable Water Isotope Intercomparison Group, Phase 2, are currently used for numerous studies, allowing water isotope model‐data comparisons with various isotope‐enabled atmospheric general circulation model (AGCMs) outputs. However, the simulations under this framework were performed using different parameterizations and forcings. Therefore, a uniform experimental design with state‐of‐the‐art AGCMs is required to interpret isotope observations rigorously. Here, we evaluate the outputs from three isotope‐enabled numerical models nudged by three different reanalysis products and investigate the ability of the isotope‐enabled AGCMs to reproduce the spatial and temporal patterns of water isotopic composition observed at the surface and in the atmospheric airborne water. Through correlation analyses at various spatial and temporal scales, we found that the model's performance depends on the model or reanalysis we use, the observations we compare, and the vertical levels we select. Moreover, we employed the stable isotope mass balance method to conduct decomposition analyses on the ratio of isotopic changes in the atmosphere. Our goal was to elucidate the spread in simulated atmospheric column δ18O, which is influenced by factors such as evaporation, precipitation, and horizontal moisture flux. Satisfying the law of conservation of water isotopes, this budget method is expected to explain various fractionation phenomena in atmospheric meteorological and climatic events. It also aims to highlight the spreads in modeled isotope results among different experiments using multiple models and reanalyses, which are primarily dominated by uncertainties in moisture flux and precipitation, respectively.
Publisher
American Geophysical Union (AGU)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献