Extracting Subseasonal Scenarios: An Alternative Method to Analyze Seasonal Predictability of Regional-Scale Tropical Rainfall

Author:

Moron Vincent1,Camberlin Pierre2,Robertson Andrew W.3

Affiliation:

1. Aix-Marseille Université, CEREGE UM 34 CNRS, Aix en Provence, France, and International Research Institute for Climate and Society, Columbia University, Palisades, New York

2. Biogéosciences, Centre de Recherches de Climatologie, Université de Bourgogne, Dijon, France

3. International Research Institute for Climate and Society, Columbia University, Palisades, New York

Abstract

Abstract Current seasonal prediction of rainfall typically focuses on 3-month rainfall totals at regional scale. This temporal summation reduces the noise related to smaller-scale weather variability but also implicitly emphasizes the peak of the climatological seasonal cycle of rainfall. This approach may hide potentially predictable signals when rainfall is lower: for example, near the onset or cessation of the rainy season. The authors illustrate such a case for the East African long rains (March–May) on a network of 36 stations in Kenya and north Tanzania from 1961 to 2001. Spatial coherence and potential predictability of seasonal rainfall anomalies associated with tropical sea surface temperature (SST) anomalies clearly peak during the early stage of the rainy season (in March), while the largest rainfall (in April and May) is far less spatially coherent; the latter is shown to contain a large noise component at the station scale that characterizes interannual variability of the March–May seasonal total amounts. Combining the empirical orthogonal function of both interannual and subseasonal variations with a fuzzy k-means clustering is shown to capture the most spatially coherent subseasonal “scenarios” that tend to filter out the noisier variations of the rainfall field and emphasize the most consistent signals in both time and space. This approach is shown to provide insight into the seasonal predictability of long dry spells and heavy daily rainfall events at local scale and their subseasonal modulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3