Effects of Convective Microphysics Parameterization on Large-Scale Cloud Hydrological Cycle and Radiative Budget in Tropical and Midlatitude Convective Regions

Author:

Storer Rachel L.1,Zhang Guang J.1,Song Xiaoliang1

Affiliation:

1. Scripps Institution of Oceanography, La Jolla, California

Abstract

Abstract A two-moment microphysics scheme for deep convection was previously implemented in the NCAR Community Atmosphere Model version 5 (CAM5) by Song et al. The new scheme improved hydrometeor profiles in deep convective clouds and increased deep convective detrainment, reducing the negative biases in low and midlevel cloud fraction and liquid water path compared to observations. Here, the authors examine in more detail the impacts of this improved microphysical representation on regional-scale water and radiation budgets. As a primary source of cloud water for stratiform clouds is detrainment from deep and shallow convection, the enhanced detrainment leads to larger stratiform cloud fractions, higher cloud water content, and more stratiform precipitation over the ocean, particularly in the subtropics where convective frequency is also increased. This leads to increased net cloud radiative forcing. Over land regions, cloud amounts are reduced as a result of lower relative humidity, leading to weaker cloud forcing and increased OLR. Comparing the water budgets to cloud-resolving model simulations shows improvement in the partitioning between convective and stratiform precipitation, though the deep convection is still too active in the GCM. The addition of convective microphysics leads to an overall improvement in the regional cloud water budgets.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3