The Impact of High-Resolution SRTM Topography and Corine Land Cover on Lightning Calculations in WRF

Author:

de Meij AlexanderORCID,Ojha NarendraORCID,Singh NarendraORCID,Singh JaydeepORCID,Poelman Dieter Roel,Pozzer AndreaORCID

Abstract

The goal of this study is to investigate the impact of high-resolution SRTM and Corine Land Cover on the number of cloud–ground lightning flashes and their spatial distribution simulated by a numerical weather-prediction model. Two lightning episodes were selected: (1) over a non-complex terrain and (2) over a complex terrain, the Alps. Significant discrepancies were found in the geographical distribution of the land-cover classes and also in the topography between Corine Land Cover and 30-arc seconds USGS. In general, the timing and the spatial distribution of Cloud-to-Ground (CG) lightning by the model were well-represented when compared to the observations. In general, more CG flashes were calculated by the simulation with USGS Land Cover and topography than the simulation with Corine Land Cover and SRTM topography. It appears that the differences in sensible and latent heat fluxes between the simulations were caused by the differences in land-cover classes. Moreover, differences in the vertical wind speeds, specific humidity, temperature and the convective available potential energy were found when compared to observations, resulting in the differences in cloud–ground lightning flashes between the simulation with the SRTM topography and Corine Land Cover and the simulation with the USGS Land Cover and topography. Using the high-resolution land cover and topography data may help to reduce uncertainties in CG lightning calculations by the model.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference91 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3