Changes in the Amplitude of the Temperature Annual Cycle in China and Their Implication for Climate Change Research

Author:

Qian Cheng1,Fu Congbin2,Wu Zhaohua3

Affiliation:

1. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, and Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. Department of Earth, Ocean and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Abstract

Abstract Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. In this study, the ensemble empirical mode decomposition (EEMD) method is applied to investigate the nonlinear trend in the amplitude of the annual cycle (which contributes 96% of the total variance) of China’s daily mean surface air temperature for the period 1961–2007. The results show that the variation and change in the amplitude are significant, with a peak-to-peak annual amplitude variation of 13% (1.8°C) of its mean amplitude and a significant linear decrease in amplitude by 4.6% (0.63°C) for this period. Also identified is a multidecadal change in amplitude from significant decreasing (−1.7% decade−1 or −0.23°C decade−1) to significant increasing (2.2% decade−1 or 0.29°C decade−1) occurring around 1993 that overlaps the systematic linear trend. This multidecadal change can be mainly attributed to the change in surface solar radiation, from dimming to brightening, rather than to a warming trend or an enhanced greenhouse effect. The study further proposes that the combined effect of the global dimming–brightening transition and a gradual increase in greenhouse warming has led to a perceived warming trend that is much larger in winter than in summer and to a perceived accelerated warming in the annual mean since the early 1990s in China. It also notes that the deseasonalization method (considering either the conventional repetitive climatological annual cycle or the time-varying annual cycle) can also affect trend estimation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3