Atmospheric NH3 in urban Beijing: long-term variations and implications for secondary inorganic aerosol control
-
Published:2024-08-28
Issue:16
Volume:24
Page:9355-9368
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Lan ZiruORCID, Zhang Xiaoyi, Lin WeiliORCID, Xu XiaobinORCID, Ma Zhiqiang, Jin Jun, Wu Lingyan, Zhang Yangmei
Abstract
Abstract. Ammonia (NH3) has major effects on the environment and climate. In situ measurements of NH3 concentrations taken between June 2009 and July 2020 at an urban site in Beijing were analyzed to study its long-term behavior, responses to meteorological conditions, and influences on the formation of secondary inorganic aerosols (SIAs). The 11-year average NH3 mixing ratio was 26.9±19.3 ppb (median 23.5 ppb). The annual average NH3 mixing ratio increased from 2009 to 2017 by 50 % and then decreased by 49 % from 2017 to 2020. Notably, the long-term trend for NH3 at the ground level did not align with the trends derived from satellite observations and emission estimates. The NH3 concentration exhibited a stronger correlation with the daily variation in water vapor (H2O) concentration than with air temperature. Thermodynamic modeling revealed the nonlinear response of SIAs to NH3, with increased sensitivity when its concentration was reduced to 40 % of the initial level. Although reducing NH3 concentrations can improve air quality during winter, controlling acid gas concentrations has a greater effect than controlling NH3 concentrations on reducing SIA concentrations, until NH3 and acidic gas concentrations are reduced below 80 % of their current levels. Nevertheless, the increased mass proportion of ammonium salts in SIAs during the observation period indicates that future control measures for NH3 concentrations may need to be prioritized in Beijing.
Funder
National Natural Science Foundation of China Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
Publisher
Copernicus GmbH
Reference106 articles.
1. Allen, H. M., Draper, D. C., Ayres, B. R., Ault, A., Bondy, A., Takahama, S., Modini, R. L., Baumann, K., Edgerton, E., Knote, C., Laskin, A., Wang, B., and Fry, J. L.: Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study, Atmos. Chem. Phys., 15, 10669–10685, https://doi.org/10.5194/acp-15-10669-2015, 2015. 2. Asman, W. A. H. and van Jaarsveld, H. A.: A variable-resolution transport model applied for NHχ in Europe, Atmos. Environ. Part A, 26, 445–464, https://doi.org/10.1016/0960-1686(92)90329-J, 1992. 3. Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. R., 20, 8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013. 4. Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. Roy. Stat. Soc. B, 57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x, 1995. 5. Buijsman, E., Aben, J. M. M., Van Elzakker, B. G., and Mennen, M. G.: An automatic atmospheric ammonia network in the Netherlands set-up and results, Atmos. Environ., 32, 317–324, https://doi.org/10.1016/S1352-2310(97)00233-1, 1998.
|
|