Understanding seasonal cycle of daily extreme temperatures based on generalized additive model for location, scale and shape with smoothing spline

Author:

Tu Kai1ORCID,Yan Zhongwei1ORCID,Qian Cheng1ORCID

Affiliation:

1. Key Laboratory of Regional Climate and Environment for Temperature East Asia Institute of Atmospheric Physics, China Academy of Sciences Beijing China

Abstract

AbstractThe seasonal cycle (SC) of surface air temperature is a substantial element in climatology. Some basic and important topics in climate change studies are based on accurate and reliable estimation of SCs, such as percentile‐based indices of extremes and probability density function (PDF) changes of daily temperatures. For both of them, most studies characterized SCs using averages of multi‐days windows, which is not smooth and accurate enough representing the extreme thresholds and climatological normal of SCs. It is necessary to construct smooth and reasonable SCs for more accurate estimation of temperature changes on extreme thresholds and PDFs. In this study, we propose a flexible method based on generalized additive models for location scale and shape and penalized b‐spline smoothing technique with respective distributions to construct smooth SCs and SC for extreme temperatures (SCETs). The accuracy of the constructed smooth SCETs is good with the estimation biases of percentiles tending to be zero. The constructed smooth SCET also exhibits good stability over time, such that the magnitude changes of temperatures on each calendar day are close to climatic changes of mean temperature when the concerned period shifts. Based on the constructed smooth SCs, climatic changes by seasons and PDFs between two periods, 1961–1990 and 1991–2020, are examined over China. The increase of thresholds for hot extremes in spring during the recent period is prominent, while the increase of thresholds for daytime cold extremes in summer over a part of central to southern China is also notable. The smooth SCs and SCETs based on our flexible statistical modelling framework can characterize daily extreme temperatures reasonably and accurately, and should be expected to have more applications for a better understanding of climate changes related to distributions and seasonal cycles.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3