Affiliation:
1. Lawrence Berkeley National Laboratory, Berkeley, California
Abstract
Abstract
The authors analyze global climate model predictions of soil temperature [from the Coupled Model Intercomparison Project phase 5 (CMIP5) database] to assess the models’ representation of current-climate soil thermal dynamics and their predictions of permafrost thaw during the twenty-first century. The authors compare the models’ predictions with observations of active layer thickness, air temperature, and soil temperature and with theoretically expected relationships between active layer thickness and air temperature annual mean- and seasonal-cycle amplitude. Models show a wide range of current permafrost areas, active layer statistics (cumulative distributions, correlations with mean annual air temperature, and amplitude of seasonal air temperature cycle), and ability to accurately model the coupling between soil and air temperatures at high latitudes. Many of the between-model differences can be traced to differences in the coupling between either near-surface air and shallow soil temperatures or shallow and deeper (1 m) soil temperatures, which in turn reflect differences in snow physics and soil hydrology. The models are compared with observational datasets to benchmark several aspects of the permafrost-relevant physics of the models. The CMIP5 models following multiple representative concentration pathways (RCP) show a wide range of predictions for permafrost loss: 2%–66% for RCP2.6, 15%–87% for RCP4.5, and 30%–99% for RCP8.5. Normalizing the amount of permafrost loss by the amount of high-latitude warming in the RCP4.5 scenario, the models predict an absolute loss of 1.6 ± 0.7 million km2 permafrost per 1°C high-latitude warming, or a fractional loss of 6%–29% °C−1.
Publisher
American Meteorological Society
Reference51 articles.
1. Brown, J., O.FerriansJr., J.Heginbottom, and E.Melnikov, 1998: Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html.]
2. The Circumpolar Active Layer Monitoring (CALM) program: Research designs and initial results;Brown;Polar Geogr.,2000
3. Uncertainties in the global temperature change caused by carbon release from permafrost thawing;Burke;Cryosphere Discuss.,2012
4. Comment on “A projection of severe near-surface permafrost degradation during the 21st century” by David M. Lawrence and Andrew G. Slater;Burn;Geophys. Res. Lett.,2006
5. Large inert carbon pool in the terrestrial biosphere during the last glacial maximum;Ciais;Nat. Geosci.,2012
Cited by
341 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献