Uncertainties in the global temperature change caused by carbon release from permafrost thawing
Author:
Burke E. J.,Hartley I. P.,Jones C. D.
Abstract
Abstract. Under climate change thawing permafrost will cause old carbon which is currently frozen and inert to become vulnerable to decomposition and release into the climate system. This paper develops a simple framework for estimating the impact of this permafrost carbon release on the global mean temperature (P-GMT). The analysis is based on simulations made with the Hadley Centre climate model (HadGEM2-ES) for a range of representative CO2 concentration pathways. Results using the high concentration pathway (RCP 8.5) suggest that by 2100 the annual methane (CH4) emission rate is 2–59 Tg CH4 yr−1 and 50–270 Pg C has been released as CO2 with an associated P-GMT of 0.08–0.36 °C (all 5th–95th percentile ranges). P-GMT is considerably lower – between 0.02 and 0.11 °C – for the low concentration pathway (RCP2.6). The uncertainty in climate model scenario causes about 50% of the spread in P-GMT by the end of the 21st century, indicating that the effect of permafrost thaw on global mean temperature is currently controllable by mitigation measures. The distribution of soil carbon, in particular how it varies with depth, contributes to about half of the remaining spread in P-GMT by 2100 with quality of soil carbon and decomposition processes contributing a further quarter each. These latter uncertainties could be reduced through additional observations. Over the next 20–30 yr, whilst scenario uncertainty is small, improving our knowledge of the quality of soil carbon will contribute significantly to reducing the spread in the, albeit relatively small, P-GMT.
Funder
European Commission
Publisher
Copernicus GmbH
Reference48 articles.
1. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R .L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 2. Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-scale controls of methanogenesis inferred from methane and gravity spaceborne Data, Science, 327, 322–325, https://doi.org/10.1126/science.1175176, 2010. 3. Burke, E. J., Dankers, R. D., and Jones, C. D.: Evaluating changes in near-surface permafrost during the 20th century with the JULES land surface model, in preparation, 2012. 4. Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt, U., and Johansson, M.: A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts, Geophys. Res. Lett., 37, L14705, https://doi.org/10.1029/2009GL042064, 2010. 5. Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|