Effects of land surface model resolution on fluxes and soil state in the Arctic

Author:

Schickhoff MeikeORCID,de Vrese PhilippORCID,Bartsch AnnettORCID,Widhalm BarbaraORCID,Brovkin VictorORCID

Abstract

Abstract Arctic land is characterized by a high surface and subsurface heterogeneity on different scales. However, the effects of land surface model resolution on fluxes and soil state variables in the Arctic have never been systematically studied, even though smaller scale heterogeneities are resolved in high-resolution land boundary condition datasets. Here, we compare 210 km and 5 km setups of the land surface model JSBACH3 for an idealized case study in eastern Siberia to investigate the effects of high versus low-resolution land boundary conditions on simulating the interactions of soil physics, hydrology and vegetation. We show for the first time that there are differences in the spatial averages of the simulated fluxes and soil state variables between resolution setups. Most differences are small in the summer mean, but larger within individual months. Heterogeneous soil properties induce large parts of the differences while vegetation characteristics play a minor role. Active layer depth shows a statistically significant increase of +20% in the 5 km setup relative to the 210 km setup for the summer mean and +43% for August. The differences are due to the nonlinear vertical discretization of the soil column amplifying the impact of the heterogeneous distributions of soil organic matter content and supercooled water. Resolution-induced differences in evaporation fluxes amount to +43% in July and are statistically significant. Our results show that spatial resolution significantly affects model outcomes due to nonlinear processes in heterogenous land surfaces. This suggests that resolution needs to be accounted in simulations of land surface models in the Arctic.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3