The Changing Influences of ENSO and the Pacific Meridional Mode on Mesoscale Eddies in the South China Sea

Author:

Tuo Pengfei1,Yu Jin-Yi2,Hu Jianyu3

Affiliation:

1. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China, and Department of Earth System Science, University of California, Irvine, Irvine, California

2. Department of Earth System Science, University of California, Irvine, Irvine, California

3. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Abstract

This study finds that the correlation between El Niño–Southern Oscillation (ENSO) and the activity of mesoscale oceanic eddies in the South China Sea (SCS) changed around 2004. The mesoscale eddy number determined from satellite altimetry observations using a geometry of the velocity vector method was significantly and negatively correlated with the Niño-3.4 index before 2004, but the correlation weakened and became insignificant afterward. Further analyses reveal that the ENSO–eddy relation is controlled by two major wind stress forcing mechanisms: one directly related to ENSO and the other indirectly related to ENSO through its subtropical precursor—the Pacific meridional modes (PMMs). Both mechanisms induce wind stress curl variations over the SCS that link ENSO to SCS eddy activities. While the direct ENSO mechanism always induces a negative ENSO–eddy correlation through the Walker circulation, the indirect mechanism is dominated by the northern PMM (nPMM), resulting in a negative ENSO–eddy correlation before 2004, and by the southern PMM (sPMM) after 2004, resulting in a positive ENSO–eddy correlation. As a result, the direct and indirect mechanisms enhance each other to produce a significant ENSO–eddy relation before 2004, but they cancel each other out, resulting in a weak ENSO–eddy relation afterward. The relative strengths of the northern and southern PMMs are the key to determining the ENSO–eddy relation and may be related to a phase change of the interdecadal Pacific oscillation.

Funder

National Science Foundation’s Climate and Large-Scale Dynamics Program

National Basic Research Program of China

National Natural Science Foundation of China

China Scholarship Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3