Spatiotemporal Characteristics and Volume Transport of Lagrangian Eddies in the Northwest Pacific

Author:

Yuan Quanmu1,Hu Jianyu12ORCID

Affiliation:

1. State Key Laboratory of Marine Environmental Science, Center for Marine Meteorology and Climate Change, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

Abstract

Mesoscale eddies play a crucial role in the transport of mass, heat, salt and nutrients, exerting significant influence on ocean circulation patterns, biogeochemical processes and the global climate system. Based on Lagrangian-Averaged Vorticity Deviation (LAVD) method, this study applies 27 years (1993–2019) of geostrophic current velocity data to detect Rotationally Coherent Lagrangian Vortices (RCLVs) in the Northwest Pacific (NWP; 10°N–30°N, 115°E–155°E), with the spatiotemporal characteristics of Eulerian Sea Surface Height Eddies (SSH eddies) and RCLVs being compared. A higher number of SSH eddies and RCLVs can be observed in spring and winter, and their inter-annual variations are similar. SSH eddies show higher generation number and larger radius in the Subtropical Countercurrent region, while RCLVs occur more favorably in the ocean basin. The propagation speed distributions of both eddy types are nearly identical and decrease with increasing latitude. Due to the material coherent transport maintained by RCLVs within a finite time interval, the coherent cores of RCLVs are considerably smaller in scale as compared to those of SSH eddies. The average zonal transports induced by SSH eddies and RCLVs are estimated to be −0.82 Sv and −0.51 Sv (1 Sv = 106 m3/s), respectively. For non-overlapping SSH eddies with RCLVs, approximately 80% of the water within the eddy leaks out during the eddy’s lifespan. In the case of overlapping SSH eddies, the ratio of coherent water inside the eddy decreases with increasing radius, and the leakage rate is around 58%. Finally, an examination of 36 shedding RCLVs events from the Kuroshio near the Luzon Strait, which induce an average zonal transport of −0.14 Sv, reveals that 54% of the water within the shedding RCLVs originates from the Kuroshio.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3