The Periodic Cyclonic Eddy in Southwestern Taiwan and Its Interannual Variation Related to Large‐Scale Climate Variations

Author:

Gao Ziyang12ORCID,Chu Xiaoqing1ORCID,Chen Gengxin1ORCID

Affiliation:

1. State Key Laboratory of Tropical Oceanography South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China

2. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractPeriodic eddies are a type of eddy that occur almost annually in fixed timeframes with similar patterns and trajectories. Nearly every year from April to June, under the combined effect of the barotropic instability of the mean flow and wind work, a cyclonic eddy (the Taiwan Cyclonic Eddy, TCE) forms in the southwest of Taiwan, then propagates westward, and finally dissipates near the Dongsha Islands. TCE exerts a significant impact on the Kuroshio intrusion into the South China Sea (SCS) and water exchange. Based on multi‐year in situ and satellite observations, this study reveals the thermohaline structure and evolutionary process of the TCE. The evolutions of the three‐dimensional structures of temperature, salinity, and geostrophic velocity of the TCE are analyzed based on reconstructed data. The TCE shows important interannual variations associated with El Niño–Southern Oscillation (ENSO), and the relationship between ENSO and the TCE is modulated by the Pacific Decadal Oscillation (PDO). In the negative phase of the PDO, the intensity of the TCE is significantly correlated with the Niño‐3.4 index. In contrast, in the positive phase, the ENSO–TCE relationship becomes weak and non‐significant. Further investigations indicate that these differences are related to the establishment of the low‐latitude Pacific–East Asian Teleconnection, influencing local wind stress curl in the region. This offers a new perspective on understanding the interannual variation of periodic mesoscale eddies in the SCS.

Funder

National Key Research and Development Program of China

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3