Tropical Cloud Cluster Environments and Their Importance for Tropical Cyclone Formation

Author:

Teng Hsu-Feng1,Lee Cheng-Shang2,Hsu Huang-Hsiung3,Done James M.4,Holland Greg J.4

Affiliation:

1. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan, and National Center for Atmospheric Research, Boulder, Colorado

2. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

3. Research Center for Environmental Changes, Academia Sinica, and Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

4. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract This study uses a nonhierarchical cluster analysis to identify the major environmental circulation patterns associated with tropical cloud cluster (TCC) formation in the western North Pacific. All TCCs that formed in July–October 1981–2009 are examined based on their 850-hPa wind field around TCC centers. Eight types of environmental circulation patterns are identified. Of these, four are related to monsoon systems (trough, confluence, north of trough, and south of trough), three are related to easterly systems (low-latitude zone, west of subtropical high, and southwest of subtropical high), and one is associated with low-latitude cross-equatorial flow. The genesis potential index (GPI) is analyzed to compare how favorable the environmental conditions are for tropical cyclone (TC) formation when TCCs form. Excluding three cluster types with the GPI lower than the climatology of all samples, TCCs formed in monsoon environments have larger sizes, lower brightness temperatures, longer lifetimes, and higher GPIs than those of TCCs formed in easterly environments. However, for TCCs formed in easterly environments, the average GPI for those TCCs that later develop into TCs (developing TCCs) is higher than that for other TCCs (nondeveloping TCCs). This difference is nonsignificant for TCCs formed in monsoon environments. Conversely, the average magnitudes of GPI are similar for developing TCCs, regardless of whether TCCs form in easterly or monsoon environments. In summary, the probability of a TCC to develop into a TC is more sensitive to the environmental conditions for TCCs formed in easterly environments than those formed in monsoon environments.

Funder

National Taiwan University

Ministry of Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3