Assessment of an Experimental Version of fvGFS for TC Genesis Forecasting Ability in the Western North Pacific

Author:

Lin Shu-Jeng1,Hsu Huang-Hsiung2ORCID,Tu Chia-Ying2,Chih Cheng-Hsiang3

Affiliation:

1. a Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan

2. b Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

3. c Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Abstract

Abstract We evaluated the ability of the fvGFS with a 13-km resolution in simulating tropical cyclone genesis (TCG) by conducting hindcast experiments for 42 TCG events over 2018–19 in the western North Pacific (WNP). We observed an improved hit rate with a lead time of between 5 and 4 days; however, from 4- to 3-day lead time, no consistent improvement in the temporal and spatial errors of TCG was obtained. More “Fail” cases occurred when and where a low-level easterly background flow prevailed: from mid-August to September 2018 and after October 2019 and mainly in the eastern WNP. In “Hit” cases, 850-hPa streamfunction and divergence, 200-hPa divergence, and genesis potential index (GPI) provided favorable TCG conditions. However, the Hit–Fail case differences in other suggested factors (vertical wind shear, 700-hPa moisture, and SST) were nonsignificant. By contrast, the reanalysis used for validation showed only significant difference in 850-hPa streamfunction. We stratified the background flow of TCG into four types. The monsoon trough type (82%) provided the most favorable environmental conditions for successful hindcasts, followed by the subtropical high (45%), easterly (17%), and others (0%) types. These results indicated that fvGFS is more capable of enhancing monsoon trough circulation and provides a much better environment for TCG development but is less skillful in other types of background flow that provides weaker large-scale forcing. The results suggest that the most advanced high-resolution weather forecast models such as the fvGFS warrant further improvement to properly simulate the subtle circulation features (e.g., mesoscale convection system) that might provide seeds for TCG. Significance Statement This study provides an evaluation of tropical cyclone genesis prediction skill of fvGFS. Favorable large-scale environmental factors for successful prediction are identified. Skill dependence on environmental factors provides guidance for evaluating the reliability of a genesis forecast in advance.

Funder

Academia Sinica (TW) Thematic Research Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference82 articles.

1. Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability;Bister, M.,2002a

2. Low frequency variability of tropical cyclone potential intensity. 2. Climatology for 1982–1995;Bister, M.,2002b

3. Large-scale influences on tropical cyclogenesis in the western North Pacific;Briegel, L. M.,1997

4. Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO;Camargo, S. J.,2007

5. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index;Camargo, S. J.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3