Warm Core Structures in Organized Cloud Clusters Developing or Not Developing into Tropical Storms Observed by the Advanced Microwave Sounding Unit

Author:

Bessho Kotaro1,Nakazawa Tetsuo1,Nishimura Shuji2,Kato Koji3

Affiliation:

1. Meteorological Research Institute, Tsukuba, Japan

2. Japan Meteorological Agency/Regional Specialized Meteorological Center-Tokyo, Tokyo, Japan

3. Japan Meteorological Agency/Meteorological Satellite Center, Kiyose, Japan

Abstract

Abstract The temperature profiles of organized cloud clusters developing or not developing (nondeveloping) into tropical storms (TSs; maximum surface wind >34 kt) over the western North Pacific in 2004 were investigated using Advanced Microwave Sounding Unit (AMSU) observations in combination with the independently created early stage Dvorak analysis. Typical temperature profiles of the developing and nondeveloping cloud clusters were compared. From this comparison, positive upper-troposphere temperature anomalies were found in both cluster types; however, the spatial extent of the temperature anomalies for the developing cloud clusters was larger than those of the nondeveloping cloud clusters. Statistical analysis was performed on the temperature anomalies near the center of all clusters retrieved from AMSU observational data. Findings indicate that the area-average temperature anomalies increased along with the intensity of the clusters indicated by the Dvorak T-number classification. Using time series analysis of upper-level temperature anomalies associated with these cloud clusters, a definition of warm core structures showing the temperature anomaly greater than a threshold (WCT) was created. WCT exists when the area averaged temperature anomaly exceeds 0.9 K. Using this definition, almost 70% of the cloud clusters that had WCTs later became TSs, while 85% of those that did not have WCTs eventually dissipated without being classified as a TS. For the WCT clusters that developed into TSs, the lead time from the detection of their AMSU-based WCT to their classification as TSs was 27.7 h. These results indicate that there is a good possibility that the detection and forecasting of tropical cyclone formation, particularly those storms that later may become classified as TSs, will be improved using temperature anomalies derived from AMSU data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. Analysis of tropical cyclones using microwave satellite imagery.;Asano;RSMC Tokyo-Typhoon Center Tech. Rev.,2008

2. A technique for maximizing details in numerical weather map analysis.;Barnes;J. Appl. Meteor.,1964

3. Tropical cyclone wind retrievals from the Advanced Microwave Sounding Unit (AMSU): Application to surface wind analysis.;Bessho;J. Appl. Meteor. Climatol.,2006

4. Gravity waves, compensating subsidence, and detrainment around cumulus clouds.;Bretherton;J. Atmos. Sci.,1989

5. Large-scale influences on tropical cyclogenesis in the western North Pacific.;Briegel;Mon. Wea. Rev.,1997

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3