The Role of Stochastic Forcing in Generating ENSO Diversity

Author:

Thomas Erin E.1,Vimont Daniel J.1,Newman Matthew2,Penland Cécile3,Martínez-Villalobos Cristian4

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

2. CIRES, University of Colorado Boulder, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

3. NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

4. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract Numerous oceanic and atmospheric phenomena influence El Niño–Southern Oscillation (ENSO) variability, complicating both prediction and analysis of the mechanisms responsible for generating ENSO diversity. Predictability of ENSO events depends on the characteristics of both the forecast initial conditions and the stochastic forcing that occurs subsequent to forecast initialization. Within a linear inverse model framework, stochastic forcing reduces ENSO predictability when it excites unpredictable growth or interference after the forecast is initialized, but also enhances ENSO predictability when it excites optimal initial conditions that maximize deterministic ENSO growth. Linear inverse modeling (LIM) allows for straightforward separation between predictable signal and unpredictable noise and so can diagnose its own skill. While previous LIM studies of ENSO focused on deterministic dynamics, here we explore how noise forcing influences ENSO diversity and predictability. This study identifies stochastic forcing details potentially contributing to the development of central Pacific (CP) or eastern Pacific (EP) ENSO characteristics. The technique is then used to diagnose the relative roles of initial conditions and noise forcing throughout the evolution of several ENSO events. LIM results show varying roles of noise forcing for any given event, highlighting its utility in separating deterministic from noise-forced contributions to the evolution of individual ENSO events. For example, the strong 1982 event was considerably more influenced by noise forcing late in its evolution than the strong 1997 event, which was more predictable with long lead times due to its deterministic growth. Furthermore, the 2014 deterministic trajectory suggests that a strong event in 2014 was unlikely.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3