Forecasting Pacific SSTs: Linear Inverse Model Predictions of the PDO

Author:

Alexander Michael A.1,Matrosova Ludmila2,Penland Cécile1,Scott James D.2,Chang Ping3

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, and CIRES Climate Diagnostics Center, Boulder, Colorado

3. Department of Oceanography, Texas A&M University, College Station, Texas

Abstract

Abstract A linear inverse model (LIM) is used to predict Pacific (30°S–60°N) sea surface temperature anomalies (SSTAs), including the Pacific decadal oscillation (PDO). The LIM is derived from the observed simultaneous and lagged covariance statistics of 3-month running mean Pacific SSTA for the years 1951–2000. The model forecasts exhibit significant skill over much of the Pacific for two to three seasons in advance and up to a year in some locations, particulary for forecasts initialized in winter. The predicted and observed PDO are significantly correlated at leads of up to four seasons, for example, the correlation exceeds 0.6 for 12-month forecasts initialized in January–March (JFM). The LIM-based PDO forecasts are more skillful than persistence or a first-order autoregressive model, and have comparable skill to LIM forecasts of El Niño SSTAs. Filtering the data indicates that much of the PDO forecast skill is due to ENSO teleconnections and the global trend. Within LIM, SST anomalies can grow due to constructive interference of the empirically determined modes, even though the individual modes are damped over time. For the Pacific domain, the basinwide SST variance can grow for ∼14 months, consistent with the skill of the actual predictions. The optimal structure (OS), the initial SSTA pattern that LIM indicates should increase the most rapidly with time, is clearly relevant to the predictions, as the OS develops into a mature ENSO and PDO event 6–10 months later. The OS is also consistent with the seasonal footprinting mechanism (SFM) and the meridional mode (MM); the SFM and MM involve a set of atmosphere–ocean interactions that have been hypothesized to initiate ENSO events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3