Predicting and Understanding the Pacific Decadal Oscillation Using Machine Learning

Author:

Yao Zhixiong12ORCID,Xu Dongfeng12ORCID,Wang Jun12,Ren Jian13ORCID,Yu Zhenlong1,Yang Chenghao12,Xu Mingquan12,Wang Huiqun1,Tan Xiaoxiao4

Affiliation:

1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

2. Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Marine Academy of Zhejiang Province, Hangzhou 310012, China

3. Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

4. Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing 210098, China

Abstract

The Pacific Decadal Oscillation (PDO), the dominant pattern of sea surface temperature anomalies in the North Pacific basin, is an important low-frequency climate phenomenon. Leveraging data spanning from 1871 to 2010, we employed machine learning models to predict the PDO based on variations in several climatic indices: the Niño3.4, North Pacific index (NPI), sea surface height (SSH), and thermocline depth over the Kuroshio–Oyashio Extension (KOE) region (SSH_KOE and Ther_KOE), as well as the Arctic Oscillation (AO) and Atlantic Multi-decadal Oscillation (AMO). A comparative analysis of the temporal and spatial performance of six machine learning models was conducted, revealing that the Gated Recurrent Unit model demonstrated superior predictive capabilities compared to its counterparts, through the temporal and spatial analysis. To better understand the inner workings of the machine learning models, SHapley Additive exPlanations (SHAP) was adopted to present the drivers behind the model’s predictions and dynamics for modeling the PDO. Our findings indicated that the Niño3.4, North Pacific index, and SSH_KOE were the three most pivotal features in predicting the PDO. Furthermore, our analysis also revealed that the Niño3.4, AMO, and Ther_KOE indices were positively associated with the PDO, whereas the NPI, SSH_KOE, and AO indices exhibited negative correlations.

Funder

National Key R&D Program of China

Research Fund of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3