Impact of the North Atlantic Warming Hole on Sensible Weather

Author:

Gervais Melissa1,Shaman Jeffrey2,Kushnir Yochanan3

Affiliation:

1. Department of Meteorology and Atmospheric Science, and The Institute for CyberScience, The Pennsylvania State University, University Park, Pennsylvania, and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

2. Department of Environmental Health Sciences, Columbia University, New York, New York

3. Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Abstract

AbstractIn future climate projections there is a notable lack of warming in the North Atlantic subpolar gyre, known as the North Atlantic warming hole (NAWH). In a set of large-ensemble atmospheric simulations with the Community Earth System Model, the NAWH was previously shown to contribute to the projected poleward shift and eastward elongation of the North Atlantic jet. The current study investigates the impact of the warming hole on sensible weather, particularly over Europe, using the same simulations. North Atlantic jet regimes are classified within the model simulations by applying self-organizing maps analysis to winter daily wind speeds on the dynamic tropopause. The NAWH is found to increase the prevalence of jet regimes with stronger and more-poleward-shifted jets. A previously identified transient eddy-mean response to the NAWH that leads to a downstream enhancement of wind speeds is found to be dependent on the jet regime. These localized regime-specific changes vary by latitude and strength, combining to form the broad increase in seasonal-mean wind speeds over Eurasia. Impacts on surface temperature and precipitation within the various North Atlantic jet regimes are also investigated. A large decrease in surface temperature over Eurasia is found to be associated with the NAWH in regimes where air masses are advected eastward over the subpolar gyre prior to reaching Eurasia. Precipitation is found to be locally suppressed over the warming hole region and increased directly downstream. The impact of this downstream response on coastal European precipitation is dependent on the strength of the NAWH.

Funder

National Science Foundation

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3