Linking Future Precipitation Changes to Weather Features in CESM2‐LE

Author:

Konstali Kjersti1ORCID,Spengler Thomas1ORCID,Spensberger Clemens1ORCID,Sorteberg Asgeir1ORCID

Affiliation:

1. Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research Bergen Norway

Abstract

AbstractWeather features, such as extratropical cyclones, atmospheric rivers (ARs), and fronts, contribute to substantial amounts of precipitation globally and are associated with different precipitation characteristics. However, future changes in these characteristics, as well as their representation in climate models, remain uncertain. We attribute 6‐hourly accumulated precipitation to cyclones, moisture transport axes (AR‐like features), fronts, and cold air outbreaks, and the combinations thereof in 10 ensemble members of the CESM2‐LE between 1960 and 2100 under the SSP3‐7.0 scenario. We find that, despite some biases in both precipitation and weather features, CESM2‐LE adeptly represents the precipitation characteristics associated with the different combinations of weather features. The combinations of weather features that contribute most to precipitation in the present climate also contribute the most to future changes, both due to changes in intensity as well as frequency. While the increase in precipitation intensity dominates the overall response for total precipitation in the storm track regions, the precipitation intensity for the individual weather features does not necessarily change significantly. Instead, approximately half of the increase in precipitation intensity in the storm track regions can be attributed to a higher occurrence of the more intensely precipitating combinations of weather features, such as the co‐occurrence of extratropical cyclones, fronts, and moisture transport axes.

Funder

Norges Forskningsråd

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3