Disagreement on the North Atlantic Cold Blob Formation Mechanisms among Climate Models

Author:

Fan Yifei1,Chan Duo2,Zhang Pengfei1,Li Laifang134ORCID

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. b School of Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

3. c Institute of Computational and Data Sciences, The Pennsylvania State University, University Park, Pennsylvania

4. d Earth and Environmental Science Institute, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Despite global warming, the sea surface temperature (SST) in the subpolar North Atlantic has decreased since the 1900s. This local cooling, known as the North Atlantic cold blob, signifies a unique role of the subpolar North Atlantic in uptaking heat and hence impacts downstream weather and climate. However, a lack of observational records and their constraints on climate models leave the North Atlantic cold blob formation mechanism inconclusive. Using simulations from phase 6 of Coupled Model Intercomparison Project, we assess the primary processes driving the North Atlantic cold blob within individual models and whether the mechanisms are consistent across models. We show that 11 out of 32 models, which we call “Cold Blob” models, simulate the subpolar North Atlantic cooling over 1900–2014. Further analyzing the heat budget of the subpolar North Atlantic SST shows that models have distinct mechanisms of cold blob formation. While 4 of the 11 Cold Blob models indicate decreased oceanic heat transport convergence (OHTC) as the key mechanism, another four models suggest changes in radiative processes making predominant contributions. The contribution of OHTC and radiative processes is comparable in the remaining three models. Such a model disagreement on the mechanism of cold blob formation may be associated with simulated base-state Atlantic meridional overturning circulation (AMOC) strength, which explains 39% of the intermodel spread in the contribution of OHTC to the simulated cold blob. Models with a stronger base-state AMOC suggest a greater role of OHTC, whereas those with a weaker base-state AMOC indicate that radiative processes are more responsible. This model discrepancy suggests that the cold blob formation mechanism diagnosed from single model should be interpreted with caution. Significance Statement The mechanisms driving sea surface temperatures over the subpolar North Atlantic to cool since the 1900s remain uncertain due to the lack of direct observations. Here, we use a temperature change decomposition framework to dissect the historical trend of surface temperature simulated in multiple global climate models. The models diverge on whether the subpolar North Atlantic cooling is induced by reduced ocean heat transport convergence or altered radiative processes. Notably, the importance of ocean heat transport convergence is influenced by the simulated base-state strength of Atlantic meridional overturning circulation and the Irminger Sea’s mixed layer depth. This finding cautions against concluding the cooling mechanism from a single model and highlights a need for ongoing observations to constrain AMOC-related climate projection in the subpolar North Atlantic.

Funder

Institute for Computational and Data Sciences, Pennsylvania State University

National Science Foundation

Publisher

American Meteorological Society

Reference89 articles.

1. Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble;Bellomo, K.,2018

2. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response;Bellomo, K.,2021

3. Atlantic air-sea interaction;Bjerknes, J.,1964

4. Regional variability of Arctic Sea ice seasonal change climate indicators from a passive microwave climate data record;Bliss, A. C.,2019

5. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability;Booth, B. B. B.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3