Reply to “Comments on ‘A CloudSat–CALIPSO View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans’”

Author:

Naud Catherine M.1,Posselt Derek J.2,van den Heever Susan C.3

Affiliation:

1. Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York City, New York

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

3. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

In Naud et al., a compositing method was utilized with CloudSat– CALIPSO observations to obtain mean transects of cloud vertical distribution and surface precipitation across cold fronts, and to examine their sensitivity to the large-scale properties of the parent extratropical cyclone. This reply demonstrates the value of compositing for evaluating numerical models, and presents additional results that address the issue of the sensitivity of the initial results to the frontal detection methodology and the potential misclassification of occlusions as cold fronts. Here a sensitivity study of the cold front composite transects of cloud cover to the input datasets or the method utilized to locate the cold fronts demonstrates that these composite transects are robust and only marginally sensitive to cold front location methods. The same conclusion is reached for the robustness of the contrast between Northern and Southern Hemisphere cloud transects. While occlusions cannot directly be flagged within the database at this point, comparisons of transects obtained for subsets of cyclones of different age indicate that the misclassification of occluded fronts as cold fronts does not explain the predominance of cloud and precipitation on the warm side of the cold fronts. The strong signal on the warm side might be better explained by a predominance of forward sloping cold fronts, or the presence of the warm conveyor belt.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3