Composite Analysis of Winter Cyclones in a GCM: Influence on Climatological Humidity

Author:

Bauer Mike1,Del Genio Anthony D.2

Affiliation:

1. Department of Earth and Environmental Sciences, Columbia University, New York, New York

2. NASA Goddard Institute for Space Studies, New York, New York

Abstract

Abstract The role of midlatitude baroclinic cyclones in maintaining the extratropical winter distribution of water vapor in an operational global climate model is investigated. A cyclone identification and tracking algorithm is used to compare the frequency of occurrence, propagation characteristics, and composite structure of 10 winters of storms in the Goddard Institute for Space Studies general circulation model (GCM) and in two reanalysis products. Cyclones are the major dynamical source of water vapor over the extratropical oceans in the reanalyses. The GCM produces fewer, generally weaker, and slower-moving cyclones than the reanalyses and is especially deficient in storms associated with secondary cyclogenesis. Composite fields show that GCM cyclones are shallower and drier aloft than those in the reanalyses and that their vertical structure is less tilted in the frontal region because of the GCM’s weaker ageostrophic circulation. This is consistent with the GCM’s underprediction of midlatitude cirrus. The GCM deficiencies do not appear to be primarily due to parameterization errors; the model is too dry despite producing less storm precipitation than is present in the reanalyses and in an experimental satellite precipitation dataset, and the weakness and shallow structure of GCM cyclones is already present at storm onset. These shortcomings may be common to most climate GCMs that do not resolve the mesoscale structure of frontal zones, and this may account for some universal problems in climate GCM midlatitude cloud properties.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference70 articles.

1. North Atlantic ultra high frequency variability.;Ayraul;Tellus,1995

2. Variability of tropical upper-tropospheric humidity 1979–1998.;Bates;J. Geophys. Res.,2001

3. Bauer, M. , 2005: Observed and simulated humidity variations. Ph.D. dissertation, Columbia University, 231 pp.

4. Sensitivity of large-scale atmospheric analyses to humidity observations and its impact on the global water cycle and tropical and extratropical weather systems in ERA-40.;Bengtsson;Tellus,2004

5. Cyclone tracking in different spatial and temporal resolutions.;Blender;Mon. Wea. Rev.,2000

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3