A CloudSat–CALIPSO view of cloud and precipitation in the occluded quadrants of extratropical cyclones

Author:

Naud Catherine M.1ORCID,Ghosh Poushali2ORCID,Martin Jonathan E.2ORCID,Elsaesser Gregory S.1ORCID,Posselt Derek J.3ORCID

Affiliation:

1. NASA‐GISS, Columbia University New York New York USA

2. Department of Atmospheric and Oceanic Sciences University of Wisconsin‐Madison Madison Wisconsin USA

3. Jet Propulsion Laboratory California Institute of Technology Pasadena California USA

Abstract

AbstractUsing 10 years of satellite‐borne radar and lidar observations coupled with a novel method for automated occlusion identification, composite transects of cloud and precipitation across occluded thermal ridges of extratropical cyclones are, for the first time, constructed. These composites confirm that occluded sectors are characterized by the most extensive cloud cover and heaviest precipitation in any of the frontal regions of the cyclone. Hydrometeor frequency in occluded sectors is sensitive to the cyclone's ascent strength but not to the mean precipitable water in the cyclone's environment. This result is in contrast to the strong relationships between hydrometeor frequency and both precipitable water and ascent strength as previously reported in warm frontal regions. In both hemispheres, cloud and precipitation increase with the maximum value of the equivalent potential temperature at 700 hPa within the occluded thermal ridge, until a threshold is reached. For very large values of maximum equivalent potential temperature, hydrometeors become less frequent while precipitation rates increase. It is suggested that this conjunction is a by‐product of an increase in the frequency of convection in those instances. While in the Northern Hemisphere occluded sectors exhibit deeper and wider cloud structures than their Southern Hemisphere counterparts, their hydrometeor occurrence frequencies are less. The differences in maximum equivalent potential temperature of the thermal ridges in both hemispheres does not appear to explain the more frequent hydrometeors in the Southern Hemisphere. These relationships offer new perspectives on the interplay between cloud processes and cyclone evolution, as well as new observational constraints for process evaluation of Earth system models.

Publisher

Wiley

Subject

Atmospheric Science

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3