Avoiding Inhomogeneity in Percentile-Based Indices of Temperature Extremes

Author:

Zhang Xuebin1,Hegerl Gabriele2,Zwiers Francis W.3,Kenyon Jesse2

Affiliation:

1. Climate Research Branch, Meteorological Service of Canada, Downsview, Ontario, Canada

2. Nicholas School for the Environment and Earth Sciences, Duke University, Durham, North Carolina

3. Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

Abstract

Abstract Using a Monte Carlo simulation, it is demonstrated that percentile-based temperature indices computed for climate change detection and monitoring may contain artificial discontinuities at the beginning and end of the period that is used for calculating the percentiles (base period). This would make these exceedance frequency time series unsuitable for monitoring and detecting climate change. The problem occurs because the threshold calculated in the base period is affected by sampling error. On average, this error leads to overestimated exceedance rates outside the base period. A bootstrap resampling procedure is proposed to estimate exceedance frequencies during the base period. The procedure effectively removes the inhomogeneity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3