A comparative analysis of temperature trends at Modena Geophysical Observatory and Mount Cimone Observatory, Italy

Author:

Costanzini Sofia1ORCID,Boccolari Mauro1ORCID,Vega Parra Stephanie2ORCID,Despini Francesca1ORCID,Lombroso Luca1ORCID,Teggi Sergio1ORCID

Affiliation:

1. University of Modena and Reggio Emilia Modena Italy

2. PhD in Sustainable Development and Climate Change IUSS Pavia School Pavia Italy

Abstract

AbstractGlobal warming has become a critical environmental, social, and economic threat, with increasing frequency and intensity of extreme weather events. This study aims to analyse temperature trends and climate indices in the Po Valley, a significant economic and agricultural region in Italy, by examining data from two historical stations: the urban Modena Observatory and the rural Mount Cimone Observatory. The analysis extends previous studies to 2018, assessing the magnitude of climate changes since the 1950s and isolating the Urban Heat Island (UHI) effect in Modena. Significant warming trends were confirmed at both sites, with in maximum (TX) and minimum (TN) temperatures trends nearly doubling from 1981 to 2018 compared to 1951–2018. For example, TX trends reached 0.84°C·decade−1 in Modena and 0.62°C·decade−1 at Mount Cimone, while TN trends were 0.77 and 0.80°C·decade−1, respectively. Extreme climate indices showed a substantial increase in warm days and nights (TX90p and TN90p, respectively). Particularly we found TX90p of 27.5 days·decade−1 in Modena and 15 days·decade−1 at Mount Cimone while TN90p of 29.5 days·decade−1 in Modena, 22 days·decade−1 at Mount Cimone. The UHI effect significantly impacts Modena's temperature trends. Urbanization contributes up to 65% of the rise in warm nights. Specifically, frost days decreased by 1.88 days·decade−1 (37% of Urban Contribute, UC), tropical nights increased by 5.16 days·decade−1 (57% UC), warm nights increased by 12.7 days·decade−1 (65% UC), and cool nights decreased by 3.19 days·decade−1 (39% UC). Overall, the study underscores the importance of considering both global and local factors in regional climate trend analysis.

Publisher

Wiley

Reference97 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3