Frequency Bias Causes Overestimation of Climate Change Impacts on Global Flood Occurrence

Author:

Zhao Fang1234ORCID,Lange Stefan3ORCID,Goswami Bedartha5ORCID,Frieler Katja3ORCID

Affiliation:

1. Key Laboratory of Geographic Information Science of the Ministry of Education School of Geographic Sciences East China Normal University Shanghai China

2. Key Laboratory of Spatial‐temporal Big Data Analysis and Application of Natural Resources in Megacities Ministry of Natural Resources Shanghai China

3. Potsdam Institute for Climate Impact Research (PIK) Member of the Leibniz Association Potsdam Germany

4. Water Security Research Group Biodiversity and Natural Resources Program International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria

5. Machine Learning in Climate Science University of Tübingen Tübingen Germany

Abstract

AbstractThe frequency change of 100‐year flood events is often determined by fitting extreme value distributions to annual maximum discharge from a historical base period. This study demonstrates that this approach may significantly bias the computed flood frequency change. An idealized experiment shows frequency bias exceeding 100% for a 50‐year base period. Further analyses using Monte Carlo simulations, mathematical derivations, and hydrological model outputs reveal that bias magnitude inversely relates to base period length and is weakly influenced by the generalized extreme value distribution's shape parameter. The bias, persisting across different estimation methods, implies floods may exceed local defenses designed based on short historical records more often than expected, even without climate change. We introduce a frequency bias adjustment method, which significantly reduces the projected rise in global flood occurrence. This suggests a substantial part of the earlier projected increase in flood occurrence and impacts is not attributable to climate change.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3