The Distribution of Cloud Horizontal Sizes

Author:

Wood Robert1,Field Paul R.2

Affiliation:

1. University of Washington, Seattle, Washington

2. Met Office, Exeter, Devon, United Kingdom

Abstract

Abstract Cloud horizontal size distributions from near-global satellite data, from aircraft, and from a global high-resolution numerical weather prediction model, are presented for the scale range 0.1–8000 km and are shown to be well-represented using a single power-law relationship with an exponent of β = 1.66 ±0.04 from 0.1 to 1500 km or more. At scales longer than 1500 km, there is a statistically significant scale break with fewer very large clouds than expected from the power law. The size distribution is integrated to determine the contribution to cloud cover and visible reflectance from clouds larger than a given size. Globally, clouds with a horizontal dimension of 200 km or more constitute approximately 50% of the cloud cover and 60% of the reflectance, and this result is not sensitive to the minimum size threshold assumed in the integral assuming that the power law can be extrapolated below 100-m scale. The result is also not sensitive to whether the size distribution is determined using cloud segment length or cloud area. This emphasizes the great role played by large cloud sheets in determining the earth’s albedo. On the other hand, some 15% of global cloud cover comes from clouds smaller than 10 km, thus emphasizing the broad range of cloud sizes that contribute significantly to the earth’s radiation budget. Both of these results stem from the fact that β is slightly less than 2. The data are further divided and geographical and seasonal variations in the cloud size L50 for which clouds larger than L50 constitute 50% of the cloud cover are determined. The largest clouds (L50 > 300 km) are found over the midlatitude oceans, particularly in summer, and over the tropical convective regions of the west Pacific and Indian Oceans and the monsoon-influenced landmasses. The smallest clouds (L50 < 100 km) are found over the trade wind regions of the tropics/subtropics and over arid land areas. Small variations in the exponent β contribute significantly to the variations in L50. Finally, it is shown that a bounded cascade model can faithfully simulate the observed cloud size distributions and use this to examine the effects of limiting sensor resolution (pixel size) and domain size (number of pixels across image). Sensor resolution is not found to strongly impact the cloud size distribution provided the ratio of the domain to pixel size remains greater than ~1000. Thus, previous studies with small domain–pixel size ratios may provide biased information about the true cloud size distribution, and should be interpreted with caution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3