Finite domains cause bias in measured and modeled distributions of cloud sizes
-
Published:2024-07-26
Issue:14
Volume:24
Page:8457-8472
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
DeWitt Thomas D.ORCID, Garrett Timothy J.ORCID
Abstract
Abstract. A significant uncertainty in assessments of the role of clouds in climate is the characterization of the full distribution of their sizes. Order-of-magnitude disagreements exist among observations of key distribution parameters, particularly power law exponents and the range over which they apply. A study by Savre and Craig (2023) suggested that the discrepancies are due in large part to inaccurate fitting methods: they recommended the use of a maximum likelihood estimation technique rather than a linear regression to a logarithmically transformed histogram of cloud sizes. Here, we counter that linear regression is both simpler and equally accurate, provided the simple precaution is followed that bins containing fewer than ∼ 24 counts are omitted from the regression. A much more significant and underappreciated source of error is how to treat clouds that are truncated by the edges of unavoidably finite measurement domains. We offer a simple computational procedure to identify and correct for domain size effects, with potential application to any geometric size distribution of objects, whether physical, ecological, social or mathematical.
Funder
National Science Foundation
Publisher
Copernicus GmbH
Reference46 articles.
1. Alstott, J., Bullmore, E., and Plenz, D.: powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions, PLOS ONE, 9, 1–11, https://doi.org/10.1371/journal.pone.0085777, 2014. a 2. Beals, M. J., Fugal, J. P., Shaw, R. A., Lu, J., Spuler, S. M., and Stith, J. L.: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale, Science, 350, 87–90, http://www.jstor.org/stable/24749476 (last access: 17 July 2024), 2015. a 3. Benner, T. C. and Curry, J. A.: Characteristics of small tropical cumulus clouds and their impact on the environment, J. Geophys. Res.-Atmos., 103, 28753–28767, 1998. a, b, c, d, e, f, g 4. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., and West, G. B.: Growth, innovation, scaling, and the pace of life in cities, P. Natl. Acad. Sci. USA, 104, 7301–7306, https://doi.org/10.1073/pnas.0610172104, 2007. a 5. Bley, S., Deneke, H., Senf, F., and Scheck, L.: Metrics for the evaluation of warm convective cloud fields in a large-eddy simulation with Meteosat images, Q. J. Roy. Meteor. Soc., 143, 2050–2060, https://doi.org/10.1002/qj.3067, 2017. a, b
|
|