Meteorologists’ Interpretations of Storm-Scale Ensemble-Based Forecast Guidance

Author:

Wilson Katie A.12,Heinselman Pamela L.2,Skinner Patrick S.3,Choate Jessica J.3,Klockow-McClain Kim E.3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract During the 2017 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed, 62 meteorologists completed a survey designed to test their understanding of forecast uncertainty. Survey questions were based on probabilistic forecast guidance provided by the NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e). A mix of 20 multiple-choice and open-ended questions required participants to explain basic probability and percentile concepts, extract information using graphical representations of uncertainty, and determine what type of weather scenario the graphics depicted. Multiple-choice questions were analyzed using frequency counts, and open-ended questions were analyzed using thematic coding methods. Of the 18 questions that could be scored, 60%–96% of the participants’ responses aligned with the researchers’ intended response. Some of the most challenging questions proved to be those requiring qualitative explanations, such as to explain what the 70th-percentile value of accumulated rainfall represents in an ensemble-based probabilistic forecast. Additionally, participants providing answers not aligning with the intended response oftentimes appeared to consider the given information with a deterministic rather than probabilistic mindset. Applications of a deterministic mindset resulted in tendencies to focus on the worst-case scenario and to modify understanding of probabilistic concepts when presented with different variables. The findings from this survey support the need for improved basic and applied training for the development, interpretation, and use of probabilistic ensemble forecast guidance. Future work should collect data for a larger sample size to examine the knowledge gaps across specific user groups and to guide development of probabilistic forecast training tools.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Social Sciences (miscellaneous),Global and Planetary Change

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3