Impact of Infrared, Microwave, and Radio Occultation Satellite Observations on Operational Numerical Weather Prediction

Author:

Cucurull L.1,Anthes R. A.2

Affiliation:

1. Global Systems Division, NOAA/OAR/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

2. University Corporation for Atmospheric Research, Boulder, Colorado

Abstract

Abstract A comparison of the impact of infrared (IR), microwave (MW), and radio occultation (RO) observations on NCEP’s operational global forecast model over the month of March 2013 is presented. Analyses and forecasts with only IR, MW, and RO observations are compared with analyses and forecasts with no satellite data and with each other. Overall, the patterns of the impact of the different satellite systems are similar, with the MW observations producing the largest impact on the analyses and RO producing the smallest. Without RO observations, satellite radiances are over– or under–bias corrected and RO acts as an anchor observation, reducing the forecast biases globally. Positive correlation coefficients of temperature impacts are generally found between the different satellite observation analyses, indicating that the three satellite systems are affecting the global temperatures in a similar way. However, the correlation in the lower troposphere among all three systems is surprisingly small. Correlations for the moisture field tend to be small in the lower troposphere between the different satellite analyses. The impact of the satellite observations on the 500-hPa geopotential height forecasts is much different in the Northern and Southern Hemispheres. In the Northern Hemisphere, all the satellite observations together make a small positive impact compared to the base (no satellite) forecasts. The IR and MW, but not the RO, make a small positive impact when assimilated alone. The situation is considerably different in the Southern Hemisphere, where all the satellite observations together make a much larger positive impact, and all three observation types (IR, MW, and RO) make similar and significant impacts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3