Impact of the Assimilation of CHAMP Refractivity Profiles on Environment Canada Global Forecasts

Author:

Aparicio Josep M.1,Deblonde Godelieve1

Affiliation:

1. Meteorological Research Division, Atmospheric Science and Technology Directorate, Environment Canada, Dorval, Quebec, Canada

Abstract

Abstract The data assimilation system of Environment Canada (EC) is adapted to accept GPS radio occultation (GPSRO) data. Observations of this type are available with extensive coverage from several satellites. In this study, experiments are performed to compare the skill of EC’s three-dimensional variational data assimilation (3DVAR) system (including all data normally assimilated operationally), with and without the addition of radio occultation refractivity data from the Challenging Minisatellite Payload for Geophysical Research (CHAMP). These data were not available at the time studied as near-real-time (NRT) observations. However, data from this and other radio occultation missions are now available as NRT data, and the conditions (latency, reliability) are improving. It is expected that NRT GPSRO data from a number of satellite missions will continue to be available through the following years. The results of the assimilation tests are evaluated against the following three data types: radiosondes (temperature and dewpoint depression), satellite brightness temperatures (from the Advanced Microwave Sounding Unit-A), and GPS radio occultation refractivity profiles. For the 6-h forecasts, the differences between GPSRO observations and forecasts (O − F) are significantly reduced in the experiment that assimilates the GPSRO data. This reduction increases as the experiment proceeds in time, and stabilizes after a transient period of approximately 2 weeks, suggesting that the addition of GPSRO data to the assimilation system has a beneficial, persisting, and cumulative effect. This effect is more pronounced in the stratosphere than in the troposphere. In the stratosphere, the standard deviation of GPSRO (O − F) of the experiment that assimilates GPSRO decreases after the initial transient period by approximately 10%. This improvement can best be observed in the southern stratosphere where reductions of the order of 30% are common. This shows that, as a globally distributed and vertically well-resolved source of data, the GPSRO observations are not only useful for assimilation, but also as a tool to quantify the forecast skill of the assimilation system. Comparisons with radiometer and radiosonde data confirm the positive impact in these geographical areas. Longer-range forecasts (up to 6 days) also show a positive impact with similar geographical and altitude distribution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference36 articles.

1. Lower troposphere refractivity bias in GPS occultation retrievals.;Ao;J. Geophys. Res.,2003

2. GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique.;Beyerle;Geophys. Res. Lett.,2005

3. The operational CMC–MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation.;Côté;Mon. Wea. Rev.,1998

4. Eyre, J. R. , 1994: Assimilation of radio occultation measurements into a numerical prediction system. ECMWF Tech. Memo. 199, 34 pp.

5. The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data.;Fjeldbo;Planet. Space Sci.,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3