Understanding the impact of assimilating FORMOSAT‐7/COSMIC‐2 radio occultation refractivity on tropical cyclone genesis: Observing system simulation experiments using Hurricane Gordon (2006) as a case study

Author:

Yang Shu‐Chih1ORCID,Chen Shu‐Hua12ORCID,Chang Chih‐Chien1ORCID

Affiliation:

1. Department of Atmospheric Sciences National Central University Taiwan

2. Department of Land, Air and Water Resources University of California Davis California USA

Abstract

AbstractStudies have shown that assimilating the radio occultation (RO) observations, including those from the FORMOSAT‐3/COSMIC (constellation observing systems for meteorology, ionosphere, and climate) (FS3‐C), provides positive impacts on tropical cyclone (TC) forecasts. The FS3‐C's successor, the FORMOSAT‐7/COSMIC‐2 (FS7‐C2), provides denser spatial data coverage over the Tropics and Subtropics, where severe weather systems often occur. This study investigates the impact of FS7‐C2 refractivity profiles on the prediction of TC genesis. A quick observing system simulation experiment is conducted for the period when Hurricanes Helene and Gordon (2006) occurred over the North Atlantic Ocean using a regional ensemble data assimilation system. Though assimilating FS3‐C or FS7‐C2 ROs successfully reproduces Helene's development, assimilating FS7‐C2 ROs better captures the genesis and development of Gordon with abundant moisture and vorticity in Gordon's core region, providing conditions favorable for the development of deep convection. A minimum area‐mean total precipitable water vapor of 54 mm, as well as the existence of mid‐level cyclonic vorticity (e.g., 500 hPa), at the storm core region in the initial condition is required for forecasting Gordon's genesis. Also, the assimilation of FS7‐C2 ROs in our experiments reduces the 500 hPa geopotential error by 22% and improves probabilistic quantitative precipitation forecast compared with assimilating FS3‐C ROs. Two sensitivity tests are conducted to evaluate the impact of low‐level negatively biased FS7‐C2 RO profiles and the removal of FS7‐C2 data below 3 km on Gordon's genesis. The former test does not degrade Gordon's genesis forecast skills due to a dipole error correlation between the background ROs and the moisture field over an observed RO profile near Gordon. The latter test does degrade Gordon's forecast skills but is still better than the assimilation of FS3‐C ROs since the features of low‐level moisture and mid‐level vorticity are preserved to some extent.

Funder

National Space Organization

Publisher

Wiley

Subject

Atmospheric Science

Reference55 articles.

1. Barker D.M. Huang W. Guo Y.‐R.andBourgeois A.(2003) A three‐dimensional variational (3DVAR) data assimilation system for use with MM5 (No. NCAR/TN‐453+STR). University Corporation for Atmospheric Research p. 68.

2. On some aspects of the impact of GPSRO observations in global numerical weather prediction

3. Tropical cyclone genesis potential index in climate models

4. Impact of assimilating Formosat-7/COSMIC-II GNSS radio occultation data on heavy rainfall prediction in Taiwan

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3