Cloud Microphysical Implications for Marine Cloud Brightening: The Importance of the Seeded Particle Size Distribution

Author:

Hoffmann Fabian123ORCID,Feingold Graham3

Affiliation:

1. a Ludwig-Maximilans-Universität München, Meteorologisches Institut, Munich, Germany

2. b Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

3. c Chemical Sciences Laboratory, NOAA/Earth System Research Laboratories, Boulder, Colorado

Abstract

AbstractMarine cloud brightening (MCB) has been proposed as a viable way to counteract global warming by artificially increasing the albedo and lifetime of clouds via deliberate seeding of aerosol particles. Stratocumulus decks, which cover wide swaths of Earth’s surface, are considered the primary target for this geoengineering approach. The macroscale properties of this cloud type exhibit a high sensitivity to cloud microphysics, exposing the potential for undesired changes in cloud optical properties in response to MCB. In this study, we apply a highly detailed Lagrangian cloud model, coupled to an idealized parcel model as well as a full three-dimensional large-eddy simulation model, to show that the choice of seeded particle size distribution is crucial to the success of MCB, and that its efficacy can be significantly reduced by undesirable microphysical processes. The presence of even a small number of large particles in the seeded size spectrum may trigger significant precipitation, which will reduce cloud water and may even break up the cloud deck, reducing the scene albedo and hence counteracting MCB. On the other hand, a seeded spectrum comprising a large number of small particles reduces the fraction of activated cloud droplets and increases entrainment and evaporation of cloud water, which also reduces the efficiency of MCB. In between, there may exist an aerosol size distribution that minimizes undesirable microphysical processes and enables optimal MCB. This optimal size distribution is expected to be case dependent.

Funder

Deutsche Forschungsgemeinschaft

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3